Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tissue Eng Part A ; 22(9-10): 707-20, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27036931

RESUMO

Current approaches for the treatment of skeletal defects are suboptimal, principally because the ability of bone to repair and regenerate is poor. Although the promise of effective cellular therapies for skeletal repair is encouraging, these approaches are limited by the risks of infection, cellular contamination, and tumorigenicity. Development of a pharmacological approach would therefore help avoid some of these potential risks. This study identifies transforming growth factor beta (TGFß) signaling as a potential pathway for pharmacological modulation in vivo. We demonstrate that inhibition of TGFß signaling by the small molecule SB431542 potentiates calvarial skeletal repair through activation of bone morphogenetic protein (BMP) signaling on osteoblasts and dura mater cells participating in healing of calvarial defects. Cells respond to inhibition of TGFß signaling by producing higher levels of BMP2 that upregulates inhibitory Smad6 expression, thus providing a negative feedback loop to contain excessive BMP signaling. Importantly, study on human osteoblasts indicates that molecular mechanism(s) triggered by SB431542 are conserved. Collectively, these data provide insights into the use of small molecules to modulate key signaling pathways for repairing skeletal defects.


Assuntos
Benzamidas/farmacologia , Regeneração Óssea/efeitos dos fármacos , Dioxóis/farmacologia , Osteoblastos , Transdução de Sinais/efeitos dos fármacos , Crânio , Fator de Crescimento Transformador beta/antagonistas & inibidores , Animais , Proteína Morfogenética Óssea 2/biossíntese , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Osteoblastos/metabolismo , Osteoblastos/patologia , Crânio/lesões , Crânio/metabolismo , Crânio/patologia , Proteína Smad6/biossíntese , Fator de Crescimento Transformador beta/metabolismo
2.
Tissue Eng Part A ; 22(1-2): 31-40, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26486617

RESUMO

Cell-based therapy is an emerging paradigm in skeletal regenerative medicine. However, the primary means by which transplanted cells contribute to bone repair and regeneration remain controversial. To gain an insight into the mechanisms of how both transplanted and endogenous cells mediate skeletal healing, we used a transgenic mouse strain expressing both the topaz variant of green fluorescent protein under the control of the collagen, type I, alpha 1 promoter/enhancer sequence (Col1a1(GFP)) and membrane-bound tomato red fluorescent protein constitutively in all cell types (R26(mTmG)). A comparison of healing in parietal versus frontal calvarial defects in these mice revealed that frontal osteoblasts express Col1a1 to a greater degree than parietal osteoblasts. Furthermore, the scaffold-based application of adipose-derived stromal cells (ASCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), and osteoblasts derived from these mice to critical-sized calvarial defects allowed for investigation of cell survival and function following transplantation. We found that ASCs led to significantly faster rates of bone healing in comparison to BM-MSCs and osteoblasts. ASCs displayed both increased survival and increased Col1a1 expression compared to BM-MSCs and osteoblasts following calvarial defect transplantation, which may explain their superior regenerative capacity in the context of bone healing. Using this novel reporter system, we were able to elucidate how cell-based therapies impact bone healing and identify ASCs as an attractive candidate for cell-based skeletal regenerative therapy. These insights potentially influence stem cell selection in translational clinical trials evaluating cell-based therapeutics for osseous repair and regeneration.


Assuntos
Tecido Adiposo/metabolismo , Colágeno Tipo I/biossíntese , Regulação da Expressão Gênica , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Crânio , Aloenxertos , Animais , Sobrevivência Celular , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I , Camundongos , Camundongos Transgênicos , Crânio/lesões , Crânio/metabolismo , Crânio/patologia
3.
Tissue Eng Part A ; 22(3-4): 214-21, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26585335

RESUMO

BACKGROUND: Reconstruction of soft tissue defects has traditionally relied on the use of grafts and flaps, which may be associated with variable resorption and/or significant donor site morbidity. Cell-based strategies employing adipose-derived stromal cells (ASCs), found within the stromal vascular fraction (SVF) of adipose tissue, may offer an alternative strategy for soft tissue reconstruction. In this study, we investigated the potential of a bone morphogenetic protein receptor type 1A (BMPR1A)(+) subpopulation of ASCs to enhance de novo adipogenesis. METHODS: Human lipoaspirate was enzymatically digested to isolate SVF and magnetic-activated cell separation was utilized to obtain BMPR1A(+) and BMPR1A(-) cells. These cells, along with unenriched cells, were expanded in culture and evaluated for adipogenic gene expression and in vitro adipocyte formation. Cells from each group were also labeled with a green fluorescent protein (GFP) lentivirus and transplanted into the inguinal fat pads, an adipogenic niche, of immunocompromised mice to determine their potential for de novo adipogenesis. Confocal microscopy along with staining of lipid droplets and vasculature was performed to evaluate the formation of mature adipocytes by transplanted cells. RESULTS: In comparison to BMPR1A(-) and unenriched ASCs, BMPR1A(+) cells demonstrated significantly enhanced adipogenesis when cultured in an adipogenic differentiation medium, as evidenced by increased staining with Oil Red O and increased expression of peroxisome proliferator-activating receptor gamma (PPAR-γ) and fatty acid-binding protein 4 (FABP4). BMPR1A(+) cells also formed significantly more adipocytes in vivo, as demonstrated by quantification of GFP+ adipocytes. Minimal formation of mature adipocytes was appreciated by BMPR1A(-) cells. CONCLUSIONS: BMPR1A(+) ASCs show an enhanced ability for adipogenesis in vitro, as shown by gene expression and histological staining. Furthermore, within an adipogenic niche, BMPR1A(+) cells possessed an increased capacity to generate de novo fat compared to BMPR1A(-) and unenriched cells. This suggests utility for the BMPR1A(+) subpopulation in cell-based strategies for soft tissue reconstruction.


Assuntos
Adipócitos/metabolismo , Adipogenia , Tecido Adiposo/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/biossíntese , Adipócitos/citologia , Tecido Adiposo/citologia , Adulto , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Células Cultivadas , Feminino , Humanos , Lentivirus , Camundongos , Pessoa de Meia-Idade , Células Estromais/citologia , Células Estromais/metabolismo , Transdução Genética
4.
PLoS One ; 10(10): e0138059, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26431534

RESUMO

Bone formation and skeletal repair are dynamic processes involving a fine-tuned balance between osteoblast proliferation and differentiation orchestrated by multiple signaling pathways. Canonical Wnt (cWnt) signaling is known to playing a key role in these processes. In the current study, using a transgenic mouse model with targeted disruption of axin2, a negative regulator of cWnt signaling, we investigated the impact of enhanced activation of cWnt signaling on the osteogenic capacity and skeletal repair. Specifically, we looked at two calvarial bones of different embryonic tissue origin: the neural crest-derived frontal bone and the mesoderm-derived parietal bone, and we investigated the proliferation and apoptotic activity of frontal and parietal bones and derived osteoblasts. We found dramatic differences in cell proliferation and apoptotic activity between Axin2-/- and wild type calvarial bones, with Axin2-/- showing increased proliferative activity and reduced levels of apoptosis. Furthermore, we compared osteoblast differentiation and bone regeneration in Axin2-/- and wild type neural crest-derived frontal and mesoderm-derived parietal bones, respectively. Our results demonstrate a significant increase either in osteoblast differentiation or bone regeneration in Axin2-/- mice as compared to wild type, with Axin2-/- parietal bone and derived osteoblasts displaying a "neural crest-derived frontal bone-like" profile, which is typically characterized by higher osteogenic capacity and skeletal repair than parietal bone. Taken together, our results strongly suggest that enhanced activation of cWnt signaling increases the skeletal potential of a calvarial bone of mesoderm origin, such as the parietial bone to a degree similar to that of a neural crest origin bone, like the frontal bone. Thus, providing further evidence for the central role played by the cWnt signaling in osteogenesis and skeletal-bone regeneration.


Assuntos
Consolidação da Fratura , Osso Frontal/fisiologia , Mesoderma/fisiologia , Crista Neural/fisiologia , Osteogênese , Osso Parietal/fisiologia , Transdução de Sinais , Proteínas Wnt/metabolismo , Animais , Proteína Axina/genética , Regeneração Óssea , Camundongos , Camundongos Knockout , Osso Parietal/metabolismo
5.
J Vis Exp ; (95): 52181, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25650785

RESUMO

Bone marrow-derived mesenchymal stromal cells (BM-MSCs) are considered the gold standard for stem cell-based tissue engineering applications. However, the process by which they must be harvested can be associated with significant donor site morbidity. In contrast, adipose-derived stromal cells (ASCs) are more readily abundant and more easily harvested, making them an appealing alternative to BM-MSCs. Like BM-MSCs, ASCs can differentiate into osteogenic lineage cells and can be used in tissue engineering applications, such as seeding onto scaffolds for use in craniofacial skeletal defects. ASCs are obtained from the stromal vascular fraction (SVF) of digested adipose tissue, which is a heterogeneous mixture of ASCs, vascular endothelial and mural cells, smooth muscle cells, pericytes, fibroblasts, and circulating cells. Flow cytometric analysis has shown that the surface marker profile for ASCs is similar to that for BM-MSCs. Despite several published reports establishing markers for the ASC phenotype, there is still a lack of consensus over profiles identifying osteoprogenitor cells in this heterogeneous population. This protocol describes how to isolate and use a subpopulation of ASCs with enhanced osteogenic capacity to repair critical-sized calvarial defects.


Assuntos
Tecido Adiposo/citologia , Citometria de Fluxo/métodos , Células-Tronco Mesenquimais/citologia , Osteogênese/fisiologia , Adipócitos/citologia , Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Linhagem da Célula , Feminino , Humanos , Fenótipo
6.
Plast Reconstr Surg ; 135(3): 907-917, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25719706

RESUMO

Over 100 million patients acquire scars in the industrialized world each year, primarily as a result of elective operations. Although undefined, the global incidence of scarring is even larger, extending to significant numbers of burn and other trauma-related wounds. Scars have the potential to exert a profound psychological and physical impact on the individual. Beyond aesthetic considerations and potential disfigurement, scarring can result in restriction of movement and reduced quality of life. The formation of a scar following skin injury is a consequence of wound healing occurring through reparative rather than regenerative mechanisms. In this article, the authors review the basic stages of wound healing; differences between adult and fetal wound healing; various mechanical, genetic, and pharmacologic strategies to reduce scarring; and the biology of skin stem/progenitor cells that may hold the key to scarless regeneration.


Assuntos
Cicatriz/fisiopatologia , Regeneração/fisiologia , Fenômenos Fisiológicos da Pele , Pele/fisiopatologia , Cicatrização/fisiologia , Humanos
7.
Expert Opin Emerg Drugs ; 20(2): 235-46, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25704608

RESUMO

INTRODUCTION: Wound healing can be characterized as underhealing, as in the setting of chronic wounds, or overhealing, occurring with hypertrophic scar formation after burn injury. Topical therapies targeting specific biochemical and molecular pathways represent a promising avenue for improving and, in some cases normalizing, the healing process. AREAS COVERED: A brief overview of both normal and pathological wound healing has been provided, along with a review of the current clinical guidelines and treatment modalities for chronic wounds, burn wounds and scar formation. Next, the major avenues for wound healing drugs, along with drugs currently in development, are discussed. Finally, potential challenges to further drug development, and future research directions are discussed. EXPERT OPINION: The large body of research concerning wound healing pathophysiology has provided multiple targets for topical therapies. Growth factor therapies with the ability to be targeted for localized release in the wound microenvironment are most promising, particularly when they modulate processes in the proliferative phase of wound healing.


Assuntos
Desenho de Fármacos , Cicatrização/efeitos dos fármacos , Ferimentos e Lesões/tratamento farmacológico , Administração Tópica , Animais , Queimaduras/complicações , Queimaduras/tratamento farmacológico , Queimaduras/patologia , Cicatriz/tratamento farmacológico , Cicatriz/etiologia , Humanos , Terapia de Alvo Molecular , Guias de Prática Clínica como Assunto , Ferimentos e Lesões/patologia
8.
Cell ; 160(1-2): 285-98, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25594184

RESUMO

How are skeletal tissues derived from skeletal stem cells? Here, we map bone, cartilage, and stromal development from a population of highly pure, postnatal skeletal stem cells (mouse skeletal stem cells, mSSCs) to their downstream progenitors of bone, cartilage, and stromal tissue. We then investigated the transcriptome of the stem/progenitor cells for unique gene-expression patterns that would indicate potential regulators of mSSC lineage commitment. We demonstrate that mSSC niche factors can be potent inducers of osteogenesis, and several specific combinations of recombinant mSSC niche factors can activate mSSC genetic programs in situ, even in nonskeletal tissues, resulting in de novo formation of cartilage or bone and bone marrow stroma. Inducing mSSC formation with soluble factors and subsequently regulating the mSSC niche to specify its differentiation toward bone, cartilage, or stromal cells could represent a paradigm shift in the therapeutic regeneration of skeletal tissues.


Assuntos
Osso e Ossos/citologia , Células-Tronco Mesenquimais/citologia , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Cartilagem/citologia , Linhagem da Célula , Cruzamentos Genéticos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
9.
J Vis Exp ; (95): e52217, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25590561

RESUMO

Lipotransfer is a vital tool in the surgeon's armamentarium for the treatment of soft tissue deficits of throughout the body. Fat is the ideal soft tissue filler as it is readily available, easily obtained, inexpensive, and inherently biocompatible.(1) However, despite its burgeoning popularity, fat grafting is hampered by unpredictable results and variable graft survival, with published retention rates ranging anywhere from 10-80%. (1-3) To facilitate investigations on fat grafting, we have therefore developed an animal model that allows for real-time analysis of injected fat volume retention. Briefly, a small cut is made in the scalp of a CD-1 nude mouse and 200-400 µl of processed lipoaspirate is placed over the skull. The scalp is chosen as the recipient site because of its absence of native subcutaneous fat, and because of the excellent background contrast provided by the calvarium, which aids in the analysis process. Micro-computed tomography (micro-CT) is used to scan the graft at baseline and every two weeks thereafter. The CT images are reconstructed, and an imaging software is used to quantify graft volumes. Traditionally, techniques to assess fat graft volume have necessitated euthanizing the study animal to provide just a single assessment of graft weight and volume by physical measurement ex vivo. Biochemical and histological comparisons have likewise required the study animal to be euthanized. This described imaging technique offers the advantage of visualizing and objectively quantifying volume at multiple time points after initial grafting without having to sacrifice the study animal. The technique is limited by the size of the graft able to be injected as larger grafts risk skin and fat necrosis. This method has utility for all studies evaluating fat graft viability and volume retention. It is particularly well-suited to providing a visual representation of fat grafts and following changes in volume over time.


Assuntos
Tecido Adiposo/transplante , Sobrevivência de Enxerto/fisiologia , Transplante Heterólogo/métodos , Animais , Feminino , Humanos , Camundongos , Camundongos Nus , Modelos Animais , Microtomografia por Raio-X/métodos
10.
Blood ; 125(2): 249-60, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25406351

RESUMO

In the last decade there has been a rapid expansion in clinical trials using mesenchymal stromal cells (MSCs) from a variety of tissues. However, despite similarities in morphology, immunophenotype, and differentiation behavior in vitro, MSCs sourced from distinct tissues do not necessarily have equivalent biological properties. We performed a genome-wide methylation, transcription, and in vivo evaluation of MSCs from human bone marrow (BM), white adipose tissue, umbilical cord, and skin cultured in humanized media. Surprisingly, only BM-derived MSCs spontaneously formed a BM cavity through a vascularized cartilage intermediate in vivo that was progressively replaced by hematopoietic tissue and bone. Only BM-derived MSCs exhibited a chondrogenic transcriptional program with hypomethylation and increased expression of RUNX3, RUNX2, BGLAP, MMP13, and ITGA10 consistent with a latent and primed skeletal developmental potential. The humanized MSC-derived microenvironment permitted homing and maintenance of long-term murine SLAM(+) hematopoietic stem cells (HSCs), as well as human CD34(+)/CD38(-)/CD90(+)/CD45RA(+) HSCs after cord blood transplantation. These studies underscore the profound differences in developmental potential between MSC sources independent of donor age, with implications for their clinical use. We also demonstrate a tractable human niche model for studying homing and engraftment of human hematopoietic cells in normal and neoplastic states.


Assuntos
Linhagem da Célula , Epigênese Genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Mesenquimais/citologia , Nicho de Células-Tronco , Western Blotting , Células da Medula Óssea/citologia , Diferenciação Celular/fisiologia , Condrogênese/fisiologia , Citometria de Fluxo , Humanos , Osteogênese/fisiologia
11.
Stem Cells ; 33(3): 833-47, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25446627

RESUMO

Mesenchymal stem cells (MSCs) show promise for cellular therapy and regenerative medicine. Human adipose tissue-derived stem cells (hASCs) represent an attractive source of seed cells in bone regeneration. How to effectively improve osteogenic differentiation of hASCs in the bone tissue engineering has become a very important question with profound translational implications. Numerous regulatory pathways dominate osteogenic differentiation of hASCs involving transcriptional factors and signaling molecules. However, how these factors combine with each other to regulate hASCs osteogenic differentiation still remains to be illustrated. The highly conserved developmental proteins TWIST play key roles for transcriptional regulation in mesenchymal cell lineages. This study investigates TWIST1 function in hASCs osteogenesis. Our results show that TWIST1 shRNA silencing increased the osteogenic potential of hASCs in vitro and their skeletal regenerative ability when applied in vivo. We demonstrate that the increased osteogenic capacity observed with TWIST1 knockdown in hASCs is mediated through endogenous activation of BMP and ERK/FGF signaling leading, in turn, to upregulation of TAZ, a transcriptional modulator of MSCs differentiation along the osteoblast lineage. Inhibition either of BMP or ERK/FGF signaling suppressed TAZ upregulation and the enhanced osteogenesis in shTWIST1 hASCs. Cosilencing of both TWIST1 and TAZ abrogated the effect elicited by TWIST1 knockdown thus, identifying TAZ as a downstream mediator through which TWIST1 knockdown enhanced osteogenic differentiation in hASCs. Our functional study contributes to a better knowledge of molecular mechanisms governing the osteogenic ability of hASCs, and highlights TWIST1 as a potential target to facilitate in vivo bone healing.


Assuntos
Proteínas Nucleares/metabolismo , Engenharia Tecidual/métodos , Proteína 1 Relacionada a Twist/metabolismo , Aciltransferases , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular/fisiologia , Fatores de Crescimento de Fibroblastos/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Nus , Proteínas Nucleares/genética , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transfecção , Proteína 1 Relacionada a Twist/genética , Regulação para Cima
12.
J Vis Exp ; (93): e52056, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25407120

RESUMO

Osteoclasts are highly specialized cells that are derived from the monocyte/macrophage lineage of the bone marrow. Their unique ability to resorb both the organic and inorganic matrices of bone means that they play a key role in regulating skeletal remodeling. Together, osteoblasts and osteoclasts are responsible for the dynamic coupling process that involves both bone resorption and bone formation acting together to maintain the normal skeleton during health and disease. As the principal bone-resorbing cell in the body, changes in osteoclast differentiation or function can result in profound effects in the body. Diseases associated with altered osteoclast function can range in severity from lethal neonatal disease due to failure to form a marrow space for hematopoiesis, to more commonly observed pathologies such as osteoporosis, in which excessive osteoclastic bone resorption predisposes to fracture formation. An ability to isolate osteoclasts in high numbers in vitro has allowed for significant advances in the understanding of the bone remodeling cycle and has paved the way for the discovery of novel therapeutic strategies that combat these diseases. Here, we describe a protocol to isolate and cultivate osteoclasts from mouse bone marrow that will yield large numbers of osteoclasts.


Assuntos
Células da Medula Óssea/citologia , Técnicas de Cultura de Células/métodos , Separação Celular/métodos , Osteoclastos/citologia , Animais , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos C57BL
13.
Proc Natl Acad Sci U S A ; 111(49): E5262-71, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25422448

RESUMO

Wnt signaling is a critical regulator of bone development, but the identity and role of the Wnt-producing cells are still unclear. We addressed these questions through in situ hybridization, lineage tracing, and genetic experiments. First, we surveyed the expression of all 19 Wnt genes and Wnt target gene Axin2 in the neonatal mouse bone by in situ hybridization, and demonstrated--to our knowledge for the first time--that Osterix-expressing cells coexpress Wnt and Axin2. To track the behavior and cell fate of Axin2-expressing osteolineage cells, we performed lineage tracing and showed that they sustain bone formation over the long term. Finally, to examine the role of Wnts produced by Osterix-expressing cells, we inhibited Wnt secretion in vivo, and observed inappropriate differentiation, impaired proliferation, and diminished Wnt signaling response. Therefore, Osterix-expressing cells produce their own Wnts that in turn induce Wnt signaling response, thereby regulating their proliferation and differentiation.


Assuntos
Fatores de Transcrição/metabolismo , Proteínas Wnt/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteína Axina/metabolismo , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Separação Celular , Citometria de Fluxo , Glicoproteínas/metabolismo , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intercelular , Antígeno Ki-67/metabolismo , Camundongos , Camundongos Knockout , Mutação , Osteogênese/fisiologia , Fenótipo , Reação em Cadeia da Polimerase , Fator de Transcrição Sp7 , Células-Tronco , Via de Sinalização Wnt
14.
Regen Med ; 9(6): 817-30, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25431917

RESUMO

Wounds, both chronic and acute, continue to be a tremendous socioeconomic burden. As such, technologies drawn from many disciplines within science and engineering are constantly being incorporated into innovative wound healing therapies. While many of these therapies are experimental, they have resulted in new insights into the pathophysiology of wound healing, and in turn the development of more specialized treatments for both normal and abnormal wound healing states. Herein, we review some of the emerging technologies that are currently being developed to aid and improve wound healing after cutaneous injury.


Assuntos
Pele/citologia , Pele/patologia , Células-Tronco/citologia , Cicatrização , Animais , Humanos , Pele/lesões , Transplante de Células-Tronco , Engenharia Tecidual
15.
Plast Reconstr Surg ; 134(1): 39-46, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25028817

RESUMO

BACKGROUND: Although fat grafting can address many soft-tissue deficits, results remain inconsistent. In this study, the authors compared physical properties of fat following injection using an automated, low-shear device or the modified Coleman technique. METHODS: Lipoaspirate was obtained from nine patients and processed for injection using either a modified Coleman technique or an automated, low-shear device. Fat was passed through a 2-mm cannula and compared with minimally processed fat. A rheometer was used to measure the storage modulus and shear rate at which tissues began to lose their solid-like properties. Viscosity was also measured, and gross properties of treatment groups were evaluated qualitatively with a glass slide test. RESULTS: Fat injected through an automated, low-shear device closely matched physical properties of minimally processed fat. The storage modulus (G') of fat for the device group was greater than for the modified Coleman group, and the onset of breakdown was delayed. Similarly, viscosity measurement of fat from the automated device closely matched minimally processed fat and was greater than that of othe modified Coleman group. CONCLUSIONS: The physical properties of lipoaspirate processed using an automated, low-shear device with a 2-mm cannula preserved the intactness of fat more than the modified Coleman technique. The authors' rheologic data demonstrate less damage using an automated device compared with the modified Coleman technique and potentially support its use for improved fat graft integrity.


Assuntos
Tecido Adiposo/transplante , Injeções/métodos , Fenômenos Biomecânicos , Humanos , Injeções/instrumentação
16.
Tissue Eng Part A ; 20(21-22): 3031-40, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24854876

RESUMO

BACKGROUND: Adipose tissue represents an abundant and easily accessible source of multipotent cells that may serve as an excellent building block for tissue engineering. However, adipose-derived stromal cells (ASCs) are a heterogeneous group and subpopulations may be identified with enhanced osteogenic potential. METHODS: Human ASC subpopulations were prospectively isolated based on expression of bone morphogenetic protein receptor type-IB (BMPR-IB). Unsorted, BMPR-IB(+), and BMPR-IB(-) cells were analyzed for their osteogenic capacity through histological staining and gene expression. To evaluate their in vivo osteogenic potential, critical-sized calvarial defects were created in immunocompromised mice and treated with unsorted, BMPR-IB(+), or BMPR-IB(-) cells. Healing was assessed using microcomputed tomography and pentachrome staining of specimens at 8 weeks. RESULTS: Increased osteogenic differentiation was noted in the BMPR-IB(+) subpopulation, as demonstrated by alkaline phosphatase staining at day 7 and extracellular matrix mineralization with Alizarin red staining at day 14. This was also associated with increased expression for osteocalcin, a late marker of osteogenesis. Radiographic analysis demonstrated significantly enhanced healing of critical-sized calvarial defects treated with BMPR-IB(+) ASCs compared with unsorted or BMPR-IB(-) cells. This was confirmed through pentachrome staining, which revealed more robust bone regeneration in the BMPR-IB(+) group. CONCLUSION: BMPR-IB(+) human ASCs have an enhanced ability to form bone both in vitro and in vivo. These data suggest that positive selection for BMPR-IB(+) and manipulation of the BMP pathway in these cells may yield a highly osteogenic subpopulation of cells for bone tissue engineering.


Assuntos
Adipócitos/citologia , Adipócitos/fisiologia , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Separação Celular/métodos , Osteogênese/fisiologia , Células-Tronco/citologia , Células-Tronco/fisiologia , Adulto , Diferenciação Celular/fisiologia , Proliferação de Células , Células Cultivadas , Feminino , Humanos
17.
Int J Mol Sci ; 15(6): 9314-30, 2014 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-24865492

RESUMO

Improvements in medical care, nutrition and social care are resulting in a commendable change in world population demographics with an ever increasing skew towards an aging population. As the proportion of the world's population that is considered elderly increases, so does the incidence of osteodegenerative disease and the resultant burden on healthcare. The increasing demand coupled with the limitations of contemporary approaches, have provided the impetus to develop novel tissue regeneration therapies. The use of stem cells, with their potential for self-renewal and differentiation, is one potential solution. Adipose-derived stem cells (ASCs), which are relatively easy to harvest and readily available have emerged as an ideal candidate. In this review, we explore the potential for ASCs to provide tangible therapies for craniofacial and long bone skeletal defects, outline key signaling pathways that direct these cells and describe how the developmental signaling program may provide clues on how to guide these cells in vivo. This review also provides an overview of the importance of establishing an osteogenic microniche using appropriately customized scaffolds and delineates some of the key challenges that still need to be overcome for adult stem cell skeletal regenerative therapy to become a clinical reality.


Assuntos
Tecido Adiposo/citologia , Regeneração Óssea , Osteogênese , Transdução de Sinais , Células-Tronco/citologia , Tecido Adiposo/metabolismo , Animais , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células-Tronco/metabolismo , Engenharia Tecidual/métodos , Alicerces Teciduais
18.
Plast Reconstr Surg ; 134(2): 193-200, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24732654

RESUMO

BACKGROUND: Stem cells are attractive candidates for the development of novel therapies, targeting indications that involve functional restoration of defective tissue. Although most stem cell therapies are new and highly experimental, there are clinics around the world that exploit vulnerable patients with the hope of offering supposed stem cell therapies, many of which operate without credible scientific merit, oversight, or other patient protection. METHODS: The authors review the potential and the drawbacks of incorporation of stem cells in cosmetic procedures. A review of U.S. Food and Drug Administration-approved indications and ongoing clinical trials with adipose stem cells is provided. Furthermore, a "snapshot" analysis of Web sites using the search terms "stem cell therapy" or "stem cell treatment" or "stem cell facelift" was performed. RESULTS: Despite the protective net cast by regulatory agencies such as the U.S. Food and Drug Administration and professional societies such as the American Society of Plastic Surgeons, the authors are witnessing worrying advertisements for procedures such as stem cell face lifts, stem cell breast augmentations, and even stem cell vaginal rejuvenation. The marketing and promotion of stem cell procedures in aesthetic surgery is not adequately supported by clinical evidence in the majority of cases. CONCLUSIONS: Stem cells offer tremendous potential, but the marketplace is saturated with unsubstantiated and sometimes fraudulent claims that may place patients at risk. With plastic surgeons at the forefront of stem cell-based regenerative medicine, it is critically important that they provide an example of a rigorous approach to research, data collection, and advertising of stem cell therapies.


Assuntos
Técnicas Cosméticas , Transplante de Células-Tronco , Técnicas Cosméticas/economia , Medicina Baseada em Evidências , Humanos , Marketing , Avaliação de Resultados em Cuidados de Saúde , Rejuvenescimento , Transplante de Células-Tronco/economia , Transplante de Células-Tronco/legislação & jurisprudência , Estados Unidos , United States Food and Drug Administration
19.
Plast Reconstr Surg ; 134(1): 29-38, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24622574

RESUMO

BACKGROUND: Fat grafting has become increasingly popular for the correction of soft-tissue deficits at many sites throughout the body. Long-term outcomes, however, depend on delivery of fat in the least traumatic fashion to optimize viability of the transplanted tissue. In this study, the authors compare the biological properties of fat following injection using two methods. METHODS: Lipoaspiration samples were obtained from five female donors, and cellular viability, proliferation, and lipolysis were evaluated following injection using either a modified Coleman technique or an automated, low-shear device. Comparisons were made to minimally processed, uninjected fat. Volume retention was also measured over 12 weeks after injection of fat under the scalp of immunodeficient mice using either the modified Coleman technique or the Adipose Tissue Injector. Finally, fat grafts were analyzed histologically. RESULTS: Fat viability and cellular proliferation were both significantly greater with the Adipose Tissue Injector relative to injection with the modified Coleman technique. In contrast, significantly less lipolysis was noted using the automated device. In vivo fat volume retention was significantly greater than with the modified Coleman technique at the 4-, 6-, 8-, and 12-week time points. This corresponded to significantly greater histologic scores for healthy fat and lower scores for injury following injection with the device. CONCLUSION: Biological properties of injected tissues reflect how disruptive and harmful techniques for placement of fat may be, and the authors' in vitro and in vivo data both support the use of the automated, low-shear devices compared with the modified Coleman technique.


Assuntos
Tecido Adiposo/transplante , Sobrevivência de Enxerto , Adulto , Animais , Desenho de Equipamento , Feminino , Humanos , Injeções/instrumentação , Injeções/métodos , Masculino , Camundongos , Pessoa de Meia-Idade
20.
Curr Stem Cell Res Ther ; 9(2): 73-81, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24359141

RESUMO

In 2006, Dr. Yamanaka created the induced pluripotent stem cell (iPSC) by reprogramming adult fibroblasts back to an immature, pluripotent state. Effectively bypassing the ethical constraints of human embryonic stem cells, iPSCs have expanded the horizons of regenerative medicine by offering a means to derive autologous patient-matched cells and tissues for clinical transplantation. However, persisting safety concerns must be addressed prior to their widespread clinical application. In this review, we discuss the history of iPSCs, derivation strategies, and current research involving gene therapy and disease modeling. We review the potential of iPSCs for improving a range of cell-based therapies and obstacles to their clinical implementation.


Assuntos
Células-Tronco Pluripotentes Induzidas/fisiologia , Animais , Técnicas de Cultura de Células , Terapia Genética , Vetores Genéticos , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Modelos Biológicos , Regeneração , Medicina Regenerativa , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...